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Abstract—In this paper, the mathematical framework for
studying robust control over uncertain communication chan-
nels is introduced. The theory is developed by generalizing
the classical information theoretic measures of information
and the fundamental theorems of Shannon to the robust
analogous, which are subject to uncertainty in the source
and the communication channel. Then, by invoking these
generalized measures of information, necessary conditions
for robust control over communication channels subject to
uncertainty are presented.

I. Introduction

One of the issues that has begun to emerge in a
number of applications, such as sensor networking, large
scale teleoperation, and etc., is how to control systems
by communicating information reliably, through limited
capacity channels, when the subsystems are subject to
uncertainty. Typical examples are applications in which
a single dynamical system sends feedback information to
a distant controller via a communication link with finite
capacity. In the absence of uncertainty in the control
system and the communication channel, important
results are derived in [1], [2], [3], [4], [5], [6], [7], [8], [9].
Specially, the aim of these articles is to find a necessary
and sufficient condition for stabilizability, when there
are channel capacity and power constraints. For finite-
dimensional linear time invariant systems, it is shown
that the transmission data rate (channel capacity)
required to stabilize a controlled system must be at
least equal to the sum of logarithms of the unstable
open-loop eigenvalues.
The objective of this paper is to address similar question
when there is uncertainty in the controlled system and
communication link. In particular, to find necessary
conditions on the channel capacity which ensure robust
observability and stabilizability. The necessary steps
in realizing such a study consists of the followings. 1.
Give precise definitions of entropy, channel capacity,
and rate distortion, when the communication blocks
are subject to uncertainty. 2. Extend the fundamental
theorems of Shannon to communication systems subject
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to uncertainty. 3. Derive necessary and sufficient con-
ditions on the communication blocks which are subject
to uncertainty in order to ensure robust observability
and stabilizability of the controlled system. Clearly,
the above questions are addressed by generalizing in-
formation theory to robust information theory which
consists of the robust version of the classical source
coding, channel coding, and rate distortion to their
robust analog, which are subject to uncertainty. Then
we show that the so called robust transmission rate of
the channel must be at least equal to the robust entropy
of the source in order to ensure reliable communication.
Subsequently, we find necessary conditions for robust
observability and stabilizability for uncertain systems
over uncertain communication channels.
In the Section II, the precise notion of a robust com-
munication system, and the corresponding information
theoretic measures, which are necessary to analyze
these systems are introduced. One of the fundamental
results which is required to address issue 3 above is the
derivation of a lower bound for robust rate distortion.
In Section III, a robust version of information trans-
mission theorem is introduced. This theorem provides
an upper bound for robust rate distortion. In Section
IV, a necessary condition for robust observability and
stabilizability is derived for fully observed, finite dimen-
sional, noiseless uncertain linear systems over uncertain
channels.

II. Robust Communication systems

A. Communication System

Let (Ω,F(Ω)) denote a measurable space in which
F(Ω) is the σ-field generated by Ω, and let M(Ω) be
the set of probability measure on (Ω,F(Ω)).
Consider the communication diagram given in Figure
IV.1. Here (X ,F(X )) is the source measurable space,
and (X̃ ,F(X̃ )) is the source reproduction measurable
space. The channel input and output measurable spaces
are (Z,F(Z)) and (Z̃,F(Z̃)), respectively.
An information source is often specified by the probabil-
ity measure PX : F(X ) → [0, 1] induced by the source
on (X ,F(X ))(e.g., PX ∈ M(X )).
Communication Channel. A communication channel is
a probabilistic mapping P

Z̃|Z
: Z × F(Z̃) → [0, 1],

P
Z̃|Z

(z, B)
△
= Pr(Z̃ ∈ B|Z = z), z ∈ Z, B ∈ F(Z̃),

(II.1)

which satisfies the following conditions.
1) For every z ∈ Z, the set function P

Z̃|Z
(z, .) is a



probability measure on F(Z̃).
2)For every B ∈ F(Z̃), the function P

Z̃|Z
(., B) is an

F(Z)-measurable function.
A mapping which satisfies 1), 2) is called a stochastic
kernel, and clearly, P

Z̃|Z
(z, .) ∈ M(Z̃), ∀z ∈ Z.

The definition of the channel as a stochastic kernel
implies that the probabilities of events B ∈ F(Z̃)
conditional on the input to the channel and the input
of the encoder, namely Z = z, X = x, do not depend
on the values of the input to the encoder X = x. That
is,

Pr(Z̃ ∈ B|Z = z, X = x) = Pr(Z̃ ∈ B|Z = z),

∀B ∈ F(Z̃), z ∈ Z, x ∈ X . (II.2)

Hence, F(Z̃) and F(X̃) are conditionally independent
given F(Z). In the parlame of information theory, (II.2)
is denoted by X → Z → Z̃, and implies that the
elements of X ,Z, Z̃ form a Markov chain.
Encoder. An encoder is a stochastic kernel PZ|X :
X × F(Z) → [0, 1],

PZ|X(x, A) = Pr(Z ∈ A|X = x),

x ∈ X , A ∈ F(Z). (II.3)

Decoder. A decoder is a stochastic kernel P
X̃|Z̃

: Z̃ ×

F(X̃ ) → [0, 1],

P
X̃|Z̃

(z̃, C) = Pr(X̃ ∈ C|Z̃ = z̃),

z̃ ∈ Z̃, C ∈ F(X̃ ). (II.4)

Deterministic encoders and decoders correspond to
delta measures, and hence they follow from (II.3) and
(II.4). Thus, the definition of the decoder as stochastic
kernel implies that Z → Z̃ → X̃ forms a Markov chain,
and therefore X → Z → Z̃ → X̃ forms a Markov chain
as well.
Clearly, the above construction implies that the proba-
bility measure induced by the input of the channel on
(Z,F(Z)) can be defined through the Radon-Nikodym
derivative

PZ(A) =

∫

X

PZ|X(x, A)dPX (x),

∀A ∈ F(Z), x ∈ X . (II.5)

However, often it is necessary to impose certain lim-
itation on the input to the channel (such as average
channel input power). These kind of limitations are
introduced by assuming that the probability measure
corresponding to the channel input measurable space
(Z,F(Z)) belongs to a smaller class MCI ⊂ M(Z).
Similarly, the probability measure induced by the out-
put of the channel on (Z̃,F(Z̃)), is defined through
Radon-Nikodym derivative

P
Z̃
(B) =

∫

Z

P
Z̃|Z

(z, B)dPZ(z),

∀B ∈ F(Z̃), z ∈ Z. (II.6)

Moreover, the probability measure induced by the
output of the decoder on (X̃ ,F(X̃ )) is defined by

P
X̃

(C) =

∫

Z̃

P
X̃|Z̃

(z̃, C)dP
Z̃
(z̃),

∀C ∈ F(X̃ ), z̃ ∈ Z̃. (II.7)

Clearly, the above construction leads to the definition
of the joint probability measure PZ ⊗ P

Z̃|Z
induced on

F(Z) ×F(Z̃), via

PZ ⊗ P
Z̃|Z

(G) =

∫

Z

P
Z̃|z

(z, Gz)dPZ (z),

∀G ∈ F(Z) ×F(Z̃), z ∈ Z, (II.8)

where

Gz = {z̃ ∈ Z̃; (z, z̃) ∈ G}. (II.9)

Moreover, the product measure of PZ and P
Z̃

is denoted
by PZ ⊗ P

Z̃
, and it is defined by

PZ ⊗ P
Z̃
(G) =

∫

Z

P
Z̃
(Gz)dPZ (z),

∀G ∈ F(Z) ×F(Z̃), z ∈ Z. (II.10)

Consequently, using the conditional independence of the
Markov chain X → Z → Z̃ → X̃ , the joint probability
measure induced on F(X ) × F(Z) × F(Z̃) × F(X̃ )
denoted by P

X,Z,Z̃,X̃
is given by

P
X,Z,Z̃,X̃

(dx, dz, dz̃, dx̃)

= PX(dx) ⊗ PZ|X(x, dz) ⊗ P
Z̃|Z

(z, dz̃)

⊗P
X̃|Z̃

(z̃, dx̃). (II.11)

Finally, the reconstruction of X̃ from X is defined
through stochastic kernel

Q
X̃|X

(x, C) = Pr(X̃ ∈ C|X = x),

x ∈ X , C ∈ F(X̃ ),

Q
X̃|X

: X × F(X̃ ) → [0, 1]. (II.12)

Hence, P
X,X̃

(dx, dx̃)
△
= PX(dx) ⊗ Q

X̃|X
(x, dx̃) is the

joint probability measure induced on F(X ) ×F(X̃ ) by
PX and Q

X̃|X
, and PX(dx) ⊗ P

X̃
(dx̃) is the product

measure of PX and P
X̃

on F(X ) ×F(X̃ ).

B. Robust Information Theoretic Measures

In this subsection, we first introduce robust defini-
tions of the entropy of the source, channel capacity
and the rate distortion. Second, we extend some of
the fundamental theorems of Shannon to their robust
analogs. Third, we consider specific source and channel
uncertainty, and we present the forms of robust entropy
and channel capacity.



1) Definitions of Information Theoretic Measures:
First, we introduce robust definitions of information
theoretic measures, for memoryless systems. These def-
initions are given using relative entropy between two
measures which is defined below.

Definition 2.1: (Relative Entropy) The relative
entropy of two probability measures π and ν on
(Ω,F(Ω)) is defined by

H(π|ν)
△
= (II.13)






∫
log dπ(x)

dν(x)dπ(x) ifπ << ν, and log
dπ(x)
dν(x) ∈ L1(π)

∞ if otherwise

where “ << ” denotes absolute continuity of measures.
Next, by invoking the relative entropy one can define
the so called mutual information measure.

Definition 2.2: (Mutual Information) Let
(M,F(M), PM ) and (N ,F(N ), PN ) be two
probability spaces. Let QN |M : M × F(N ) → [0, 1],
be a stochastic kernel, and define the joint
probability measure on F(M) × F(N ) by
PM,N (dm, dn) = PM (dm) ⊗ QN |M (m, dn), and
the product measure of the marginal measures on
F(M) ×F(N ) by PM (dm) ⊗ PN (dn).
The mutual information is defined by the relative
entropy of PM,N and PM ⊗ PN via

I(M ; N)
△
= H(PM,N |PM ⊗ PN ).

=

∫
log

dPM,N (n, m)

dPM (m) ⊗ dPN (n)
dPM,N (m, n).

(II.14)
Next we define the concept of robust entropy for a
family of sources. This measure represents the amount
of the information generated by the source symbols.
This definition first appeared in [10].

Definition 2.3: (Robust Entropy of the Source) Con-
sider the source probability measure PX ∈ {PX ∈
M(X ); px = dPX

dx
}, where pX is called source distri-

bution. In many practical application, the true source
distribution is unknown but it belongs to a set Md

SU ,
called the source distribution uncertainty set. For these
sources when the source distribution belongs to pX ∈
Md

SU , the robust entropy is defined by

Hrobust(p
∗
X) = sup

pX∈Md

SU

H(pX), (II.15)

where

p∗X = argsup pX∈Md

SU

H(pX). (II.16)
The importance of the entropy of the source can be
understood in terms of the so called Shannon first
coding theorem [11], [12]. The robust Shannon first
coding theorem derived in [10] states that source

words of block length n produced by a discrete
memoryless source (e.g. a finite alphabet source
with i.i.d. outcomes) with unknown probability
density pX , which belongs to a uncertainty set

pX ∈ Md
SU = Md

SUR

△
= {pX ; H(pX |µX) ≤ R}, (µX is

nominal i.i.d. source distribution and R ≥ 0 controls
the size of uncertainty and it is known) can be encoded
into codewords of block length r from a coding
alphabet of size k with probability of block length
decoding failure pe arbitrary small for n-sufficiently
large, regardless of the true source distribution, if and
only if suppX∈MSU

H(pX) ≤ r
n
logk [10].

Next, we define memoryless robust channel capacity.
This measure provides the maximum achievable rate
under which a reliable transmission of information is
possible through memoryless channels (e.g, the output
of the channel is only dependent on the input of the
channel at that time and conditionally independent of
previous channel inputs and outputs).

Definition 2.4: (Robust Memoryless Channel Capac-
ity) In many practical applications the communication
channel P

Z̃|Z
: Z × F(Z̃) → [0, 1] belongs to the set

P
Z̃|Z

∈ MCU ⊂ M(Z̃), called the channel uncertainty

set. For these memoryless channels, the robust channel
capacity is defined by

Crobust = sup
PZ∈MCI

inf
P

Z̃|Z
∈MCU

I(Z; Z̃)

= sup
PZ∈MCI

inf
P

Z̃|Z
∈MCU

H(PZ ⊗ P
Z̃|Z

|PZ ⊗ P
Z̃
).

(II.17)
The above definition for channel capacity is the so
called information definition for channel capacity. The
importance of this definition can be understood in
terms of Shannon second coding theorem [11], [12]
which relates the information channel capacity to the
maximum transmission data rate for reliable commu-
nication, known as operational channel capacity. The
robust Shannon second coding theorem states that for a
memoryless uncertain additive white Gaussian channel,
a transmission data rate is achievable (e.g. there exits
a sequence of (2nR, n) code with maximum probability
of error λ(n) → 0, uniformly over all uncertain channel
models) if and only if R ≤ Crobust [13], [14].
Next we proceed by defining the memoryless robust rate
distortion. This is a measure of the minimum rate under
which an end to end transmission with distortion up to
distortion level D is possible for memoryless sources.
This definition first appeared in [15].

Definition 2.5: (Robust Memoryless Rate Distortion)
Let MDC = {Q

X̃|X
;
∫
X×X̃

ρ(x, x̃)dQ
X̃|X

(x̃)PX(dx) ≤

D} be the set of distortion constraints, in which D ≥ 0
is the distortion level and ρ : X × X̃ → [0,∞) is the
distortion measure. When the true source probability
measure PX belongs to the uncertainty set PX ∈



MSU ⊂ M(X ), called the source uncertainty set, the
robust rate distortion is defined by

Rrobust(D) = inf
Q

X̃|X
∈MDC

sup
PX∈MSU

I(X ; X̃)

= inf
Q

X̃|X
∈MDC

sup
PX∈MSU

H(PX ⊗ Q
X̃|X

|PX ⊗ P
X̃

).

(II.18)

The importance of this definition for the rate distortion
can be understood in terms of the so called Shannon
third coding theorem [11], [12]. The robust rate distor-
tion theorem [15] considers an uncertain memoryless
source (X ,F(X ), PX ) with single-letter fidelity criterion
(e.g. in the case of sequence with length m of source

symbols, the distortion measure is ρ(xm−1, x̃m−1)
△
=

ρm(xm−1, x̃m−1) = 1
m

∑m−1
t=0 ρ1(xt, x̃t)) such that PX ∈

MSU = MSUR
△
= {PX ; H(PX |MX) ≤ E}, where

MX ∈ M(X ) is the nominal source probability measure,
and E ≥ 0 controls the uncertainty set which is known
parameter. Let Rrobust(D) denote the rate distortion
function of (X ,F(X ), PX ) with distortion level up to
distortion level D. Then we can find a D-admissible
code of block length n for n sufficiently large, regardless
of the true source probability measure if and only if
Rrobust(D) < R. That is, Rrobust(D) is the minimum
achievable rate for distortion up to the distortion level
D. In information theoretic literature, this minimum
achievable rate is known as operational rate distortion
[15].

2) Robust Information Theoretic Measures Subject
to Relative Entropy Uncertainty: In this part, we
present calculations of the robust measures of infor-
mation, when the uncertainty is described by a relative
entropy constraint. Moreover, a lower bound for the
robust rate distortion is derived.

Theorem 2.6: (Robust Entropy)[10], [16] Let
G(R) = suppX∈Md

SUR

H(pX), where Md
SUR =

{pX , H(pX |µX) ≤ R}, where µX is fixed.
1. For memoryless discrete source with M possible
outcomes, the supremum is attained at

p∗i =
µ

s

1+s

i∑M
j=1 µ

s

1+s

j

, i = 1, 2, ..., M, (II.19)

where 0 ≤ R ≤ H(η|µX),and η is uniform distributed
(e.g. ηj = 1

M
, j = 1, 2, ..., M).

Moreover, the robust entropy is given by

G(R) = mins>0[sR + (1 + s)log
M∑

j=1

µ
s

1+s

j ]. (II.20)

2. For memoryless continuous sources, the supremum is
attained at

p∗X(x) =
µX(x)

s

1+s

∫
µX(x)

s

1+s dx
, s > 0. (II.21)

and the robust entropy is given by

G(R) = mins>0[sR + (1 + s)log

∫

X

µX(x)
s

1+s dx](II.22)

and s > 0 is such that H(p∗X |µX) = R.

Theorem 2.7: (Robust Rate Distortion) [15] Suppose
esρ ∈ L1(X̃ ,F(X̃ ), P

X̃
), ∀s ∈ ℜ.

Then the solution to the problem (II.18),with rel-

ative entropy constraint (e.g. MSU = MSUR
△
=

{PX ; H(PX |MX) ≤ E}), when MX is fixed is given
by

R(D) = sD + λR

+λlog

∫

X

(

∫

X̃

esρ(x,x̃)dP
X̃

(x̃))−
1
λ dPX(x),

(II.23)

where s ≤ 0 and λ > 0 are Lagrange multipliers.
Moreover the infimum is attained at

dP ∗
X(x) =

e
l(x)

λ dMX(x)
∫
X e

l(x)
λ dMX(x)

(II.24)

l(x) =

∫

X̃

log(e−sρ(x,x̃)
dQ∗

X̃|X
(x, x̃)

dP
X̃

(x̃)
)dQ∗

X̃|X
(x, x̃)(II.25)

and the supremum is attained at

dQ∗

X̃|X
(x, x̃) =

esρ(x,x̃)dP
X̃

(x̃)
∫

X̃
esρ(x,x̃)dP

X̃
(x̃)

(II.26)

Since, the exact expression of robust rate distortion is
difficult to obtain, it is desirable to have a lower bound
which is easily computed. This lower bound is given
below.

Lemma 2.8: (Lower Bound for Robust Rate Distor-
tion) Let the true source distribution belongs to the set
Md

SU (not necessary relative entropy uncertainty set),
and ρ(x, x̃) = ρ(x − x̃).
Then a lower bound for Rrobust(D) is given by

Rrobust(D) ≥ sup
pX∈Md

SU

H(pX) − max
g∈GD

H(g), (II.27)

where GD = {g ∈ M(X );
∫

ρ(x)g(x)dx ≤ D}.

Proof [16].

3) Communication Systems with Memory: In the be-
ginning of this subsection, we defined channel capacity
and rate distortion for memoryless channels and sources.
In this part, we extend these definitions to channel and
source with memory.
For channels with memory, the channel input and



output measurable spaces correspond to the sequences

(Z,F(Z)) = (Z0,n−1,F
Z
0,n−1)

△
= ×n−1

k=0 (Zk,F(Zk)) ⊂ ×∞
k=0(Zk,F(Zk)),

(Z̃,F(Z̃)) = (Z̃0,n−1,F
Z̃
0,n−1)

△
= ×n−1

k=0 (Z̃k,F(Z̃k)) ⊂ ×∞
k=0(Z̃k,F(Z̃k)).

(II.28)

An element in Z0,n−1 is defined by Zn−1 =
(Z0, Z1, ..., Zn−1), and similarly, for an element in
Z̃n−1.
In (II.28), (Zk,F(Zk)) and (Z̃k,F(Z̃k)) are
exemplars of measurable space (ZI ,F(ZI)) and
(Z̃O,F(Z̃O)),which are the channel input and output
alphabet measurable space sets.

Definition 2.9: (Channel Capacity with Memory)
When the channel is unknown but belongs to the
uncertainty set P

Z̃n−1|Zn−1 ∈ MCU ⊂ M(Z̃0,n−1), the

robust channel capacity is defined by

C
cap
robust = lim

n→∞

1

n
Cn,robust (II.29)

△
= lim

n→∞

1

n
sup

P
Zn−1∈MCI

inf
P

Z̃n−1|Zn−1
∈MCU

I(Zn−1; Z̃n−1)

By Shannon second theorem, under certain assumptions
it is shown that C

cap
robust is equal to the operational

capacity [13], [14].
For sources with memory, the source and reproduction
measurable spaces correspond to the sequences

(X ,F(X )) = (X0,m−1,F
X
0,m−1)

△
= ×m−1

k=0 (Xk,F(Xk)) ⊂ ×∞
k=0(Xk,F(Xk)),

(X̃ ,F(X̃ )) = (X̃0,m−1,F
X̃
0,m−1)

△
= ×m−1

k=0 (X̃k,F(X̃k)) ⊂ ×∞
k=0(X̃k,F(X̃k))(II.30)

An element in X0,m−1 is denoted by Xm−1 =
(X0, X1, ..., Xm−1), and similarly for an element in
X0,m−1. In (II.30), (Xk,F(Xk)) and (X̃k,F(X̃k))
are exemplars of measurable space (XS ,F(XS)) and
(X̃R,F(X̃R)) which are the source and reproduction
alphabet set measurable spaces.

Definition 2.10: When the true probability of the
source belongs to the uncertainty set PXm−1 ∈ MSU ⊂
M(X0,m−1), the robust rate distortion is defined by

Rra
robust(D) = lim

m→∞

1

m
Rm,robust(D)

△
= (II.31)

lim
m→∞

1

m
inf

Q
X̃m−1|Xm−1

∈MDC

sup
P

Xm−1∈MSU

I(Xm−1; X̃m−1)

4) Examples: In this part, we provide specific
examples for robust entropy of the source, and channel
capacity, for which these quantities can be computed
explicitly.

Example 2.11: (Entropy of the Source)[16] Let the
source distribution is unknown but belongs to the
uncertainty set pX ∈ Md

SUR = {pX ; H(pX |µX) ≤ R},
where µX is d-dimensional Gaussian distribution, that
is µX ∼ G(m, ΓX). Then, ∀R ≥ 0

sup
pX∈Md

SU

H(pX) =
1

2
ln(2πe)d|det

1 + s

s
ΓX |, nats,

(II.32)

where s ≥ 0 is the solution of the following equation
e−2R = ( s+1

s
)e−

d

s .
Example 2.12: (Robust Memoryless Channel Capac-

ity) [17]. Consider a Binary symmetric channel (BSC)
with crossover probability p given in Figure IV.2. When
the crossover probability p is partially known and
belongs to the uncertainty set Θ, the robust channel
capacity is given by

Crobust = inf
p∈Θ

(1 − Hb(p)). (II.33)

where

Hb(x) = −x logb x − (1 − x) logb(1 − x), x ∈ [0, 1].

(II.34)
Example 2.13: (Robust Channel Capacity with

Memory)[14].Consider additive white Gaussian channel
given in Figure IV.3. Here we assume that the power
spectral density of the noise is unknown but it belongs
to the uncertainty set {SV (f);

∫ +∞

−∞
SV (f)df ≤ Pn}.

Assume SX(f)|H(f)|2

SV (f) , ∀f ∈ (−∞, +∞) is bounded and
integrable.
Then

C
cap
robust =

1

2

∫ +∞

−∞

log(1 +
λ∗

1

λ∗
2

|H(f)|2)df, (II.35)

where the Lagrange multiplier λ∗
1 and λ∗

2 can be found
from the following equation

∫ +∞

−∞

S∗
Z(f)df = P,

∫ +∞

−∞

S∗
V (f)df = Pn, (II.36)

where

S∗
Z(f) =

λ∗
1

λ∗
2

S∗
V (f), S∗

V (f) =
|H(f)|2

2(λ∗
1|H(f)|2 + λ∗

2)
.(II.37)

III. Robust Information Transmission Theorem

In this section, we invoke the data processing inequal-
ity to derive a robust version of the information trans-
mission theorem. This theorem provides a necessary
condition for end to end transmission up to distortion
level D, (e.g. Eρ(X, X̃) ≤ D), when there is uncertainty
on the source as well as communication channel.



Theorem 3.1: (Robust Information Transmission
Theorem) A necessary condition for reproducing the
source output X up to distortion level D by X̃ at the
output of the decoder, when there is uncertainty on
the source and the communication channel is

Rrobust(D) ≤ Crobust. (III.38)

Proof [16].
Theorem 3.1 is given without any restriction on source
and channel symbols, consequently this theorem must
be applicable when we use a sequences of source and
channel symbols with length m and n (m ≤ n), respec-
tively. The next corollary shows that this theorem is
applicable when we use sequences of source and channel
symbols with length m and n and when there are
feedbacks between input and output of encoder, channel
and decoder, namely when we deal with communication
block diagram given in Figure IV.4.

Corollary 3.2: (Robust Information Transmission
Theorem in the Presence of Feedback) A necessary
condition for reproducing the source output Xm =
(X0, X1, X2, ..., Xm−1) up to distortion level D by
X̃m = (X̃0, X̃1, X̃2, ..., X̃m−1) at the output of the
decoder for n-times channel use (m ≤ n), when there is
uncertainty on the source and communication channel,
and when there are feedbacks between input and output
of encoder, channel and decoder is

Rm,robust(D) ≤ Cn,robust, (III.39)

where Cn,robust denotes the robust information channel
capacity for n-times channel use and Rm,robust(D)
denotes the robust rate distortion for sequence of length
m of source symbols.
Proof. [16].

Remark 3.3: Corollary 3.2 extends the result given
in [9] to the case when source and communication link
are subject to uncertainty. Also this corollary covers the
result given in [9] for T -times channel use (e.g. n = T ),
and sequences with length 1 (e.g. m = 1) of source
symbols, when there is no uncertainty in source and
communication link.

IV. Necessary Condition for Observability and
Stabilizability

In this section a necessary condition for observability
and stabilizability of fully observed, finite dimensional,
noiseless, uncertain linear systems over uncertain chan-
nels is introduced.
Suppose for each ∆A ∈ S ⊂ ℜn×n the linear time-
invariant system defined on a filter probability space
(Ω,F , {Ft}t≥0, {P∆A

X , ∆A ∈ S}), is given by

(Ω,F , {Ft}t≥0, {P
∆A
X , ∆A ∈ S}) :

Xt+1 = (A + ∆A)Xt + BUt, t ≥ 0, X0 ∈ ℜn.

(IV.40)

where {Xt} is ℜn value state process, and {Ut} is a ℜm-
valued control process. We have A ∈ ℜn×n, and B ∈
ℜn×m. The initial position, X0, is distributed according
to the probability density pX0 with finite differential
entropy H(pX0). Moreover system (IV.40) is supposed
to be detectable and stabilizable for each ∆A ∈ S.
In (IV.40), ∆A is an unknown matrix, which belongs to
the uncertainty set ∆A ∈ S. Let P∆A

X be the probability
measure induced by the dynamic (IV.40), when ∆A ∈
S. Then P∆A

X is a function of ∆A, and it is induced
by {Xt}t≥0. Since ∆A belongs to the uncertainty set
∆A ∈ S, then P∆A

X belongs to the set of uncertainty

P∆A
X ∈ MSU = {P∆A

X ; ∆A ∈ S, p∆A
X =

dP∆A

X

dx
}.

The nominal model corresponding to the true model
given in (IV.40) is

(Ω,F , {Ft}t≥0, PX) :

Xt+1 = AXt + BUt, t ≥ 0, X0 ∼ p(X0), X0 ∈ ℜn.

(IV.41)

The dynamic (IV.40) is cascaded with an uncertain
communication channel (See Figure IV.5) and the
objective is to find necessary condition for almost surely
uniform asymptotically observability and stabilizability
which are defined as follows.

Definition 4.1: Let the error be Et = Xt − X̂t, where
X̂t is the state estimate. System (IV.40) is almost
surely uniform asymptotically observable iff the exists
an encoder and decoder such that

sup
P∆A

X
∈MSU

Pr( lim
t→∞

||Et||2 6= 0) = 0. (IV.42)

System (IV.40) is almost surely uniform asymptotically
stabilizable iff there exist an encoder, decoder and
controller such that

sup
P∆A

X
∈MSU

Pr( lim
t→∞

||Xt||2 6= 0) = 0. (IV.43)

Remark 4.2: The above definition for observability
is a natural generalization of classical definition of
asymptotic observability to the case when there is
uncertainty in the information source.

Proposition 4.3: Given (IV.40), a necessary condition
on the operational robust channel capacity (Ccap

robust =
limn→∞

1
n
Cn,robust) for almost surely uniform asymp-

totically observability is

C
cap
robust ≥

∑

λ(A+∆Amax)

max{0, log|λ(A + ∆Amax)|}.

(IV.44)

where ∆Amax ∈ S is chosen such that

|det(A + ∆A)| =

d∏

i=1

|λi(A + ∆A)| (IV.45)

is maximum.
Proof [16].



Proposition 4.4: Given (IV.40), a necessary condition
on the operational robust channel capacity (Ccap

robust =
limn→∞

1
n
Cn,robust)for almost surely uniform asymptot-

ically stabilizability is

C
cap
robust ≥

∑

λ(A+∆Amax)

max{0, log|λ(A + ∆Amax)|}.

(IV.46)
Proof. [16].

Remark 4.5: In proving the necessary conditions
shown previously, we did not need to explicitly describe
the encoder, decoder and channel, and we did not use
an assumption of separation between the observer and
controller. Hence, the conditions hold independently of
the choice of these components. Moreover, Propositions
4.3 and 4.4 extend the result derived in [9] under
Propositions 3.2 and 3.3.
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Fig. IV.1. Block diagram of communication system

Fig. IV.2. BSC channel(memoryless channel)

Fig. IV.3. Additive white Gaussian channel (channel with
memory)

Fig. IV.4. Block diagram of communication system with feedback



Fig. IV.5. Control system with communication channel


